Abstraction and Modelling

a complementary partnership

ﬁ, Jeff Kramer

J Imperial College
: London

"Is Abstraction the key to
Computing?” CACM April 2007

Chapter 1. My teaching experience

© Kramer

Teaching experience
What is Abstraction?
Teaching Abstraction
Modelling & Analysis
Conclusion

Teaching experience

Courses:
software engineering,
distributed systems,
distributed algorithms,
programming,

concurrency, Skills:

problem solving,
conceptualization,
modelling,
analysis,

© Kramer

Experience: the better ones....

Some students are able to produce
elegant designs and solutions.

Generally the same students are also

distributed algorithms, the applicability
of the various modelling notations, and

®
e N
able to comprehend the complexities of m
so on. J

© Kramer

Experience: the others

© Kramer

A number of others are not so able.

They tend to find distributed algorithms

very difficult, do not appreciate the
utility of modelling, find it difficult to
know what is important in a problem,
produce convoluted solutions which
replicate the problem complexities,

Why ?

| believe

.. that the heart of the
problem lies in a difficulty in
dealing with

Chapter 2. What is it? Why is it so important?

Teaching experience
What is Abstraction?
Teaching Abstraction
Modelling & Analysis
Conclusion

Abstraction

Al

© Kramer

Definitions

the act of withdrawing or removing something

the act or process of leaving out of consideration one
or more properties of a complex object so as to attend
to others

=> Remove detail (simplify) and focus (selection)

a general concept formed by extracting common
features from specific examples

the process of formulating general concepts by
abstracting common properties of instances

=> generalisation (core or essence)

© Kramer

Abstraction in other disciplines

Art

Music

Maps

© Kramer

Matisse — guess what

representation
of the essence
of the subject

&

removal of
detail

Katsushika Hokusai — guess what

South Wind,
Clear Skies
(Red Fuji)

.." balance of colour and composition rendering an
abstract form of the mountain to capture its
essence” - art commentator

© Kramer

.
jazz musician o Rl
on the R / ‘-t,
T =

process of
abstraction - ¥

"It is easy to make something simple sound
complex, however its more difficult to
make something complex sound simple”.

TFM 09

1930 — London Underground map

“Fit for
purpose?”

Relationship
between
stations and
interchanges,
not actual
distances

bl |) NDERGROUR

RAILWAYS OF LONDON

© Kramer

1932 — Harry Beck (15t schematic image map)

© Kramer

2001 — Fit for purpose (“mind the gap...”)

© Kramer

Fit for purpose ?!

© Kramer

Fit for purpose — internationally!

WRAGF [a1ed
SHIN-TAKASHIMADAIRA NISHIDA!
[)

NISHI- TAKASHIMADARA A HASUNE
HROT KL

ENTTH | AR
SHIMURA. A% ITABASHI-
SANCHOME MOTO-HASUNUMA KUYAKUSHOMAE

AT
10 [
[) ® 0 ® IWABUCH! SHIMO
SHIMURASAKAUE ITABASHIHONCHO o)
pA ! BEAE)) fo—
SHINATABASHI NISHI-SUGAMO
A

ru to
SHINRIN-KOEN Tobu 1655 Une

Pt) ke
EIDAN-NARIMASU HEWADA

BILACE
NERMAKASUGACHD
HIKARIG Kg{& EIDAN-AKATSUKA
TOSHIMAEN " B

\ @' .
i | .@:m

H‘K‘ﬁl\‘ﬁmm SENKAWA KANAMECHO &
R0 i
L 7 b)\ SHIN.OTSUKA

Sotu ketxkuro Ling
NERIMA

T Sonbes Vieabuchid Lew

3 HIGASHI-
Theu to HANNO wirem W NAKA] IKEBUKURO
23 EGOTA

‘Salbl Shinjku Lne

=

Thruto
MITAKA
=
TR
sHinkoeENa (Y

HlGASHl-;OEI\U\

R AT
NAKANO-SHIMBASH! £

31018)
vonakcro O

NAKANO-FUSMICHO

Thru to
HON-ATSUGH
EY-2Y

Ko Inckashira Une

Thruto
CHUG-RINKAN
BRI
Ty DonEn-Toshl Line

hru to
Téioyl Téyoko Lne

2 amw

B
R MYBGAOANI
L/ Wy
¥ GOKOKUS

&, A

%,

§
ZA}

—CH \

YA
2

y etle
| ROPPONGHTCHOVE

B
KAMYACHO TORANO
M

T
KIKUNA
BE

ity
® ONARIMO!

Ty Oimachi Lno.

Theu to
MUSASHIKOSUGI
r Téko Mogro Une

Tokyl iegami Line.

Thvu trains run on KehinKylko Line

o]
HANEDA-AIRPORT

© Kramer

BEBWLE
Thru to
TOBU-DOBUTSU-KDEN

3
KITAAYASE
o

wy
Thru to
Vs e TORIDE

i —, — — — — —
& e —

LS
AL Keissi Lno |, AOTO
OSHWAGE) @
Thvu trains run on Kelsel Line
AFLBA
HONJO-AZUMABASH! £ §

Fl
NARITA-AIRPORT

Toyd Raoit Line

anpms
s
Tt
TSUDANUA
Bl
L BARAKENAKAYAMA
)
Ld WivooEn
He
bd GvoToKU
o it
MINAMI-GYOTOKU
Vaiz
i URAYASU

ADELS
KIYOSUMI-
SHIRAKAWA

Why is abstraction important in Software Engineering?

Software is abstract!

"Once you realize that computing is all about
constructing, manipulating, and reasoning about
abstractions, it becomes clear that an
important prerequisite for writing (good)
computer programs is the ability to handle

abstractions in a precise manner.”
Keith Devlin CACM Sept.2003

© Kramer

Why is abstraction important in Software Engineering?

Software is abstract!

Requirements
Design

Programming

Why is it important? requirements engineering

Requirements - elicit the critical aspects of the

environment and required system while neglecting
the irrelevant.

goals
scenarios

%‘?\ requirements assumptions

constraints
4 properties

"The act/process of leaving out of consideration one or more

okramer Properties of a complex object so as to attend to others” v v

Why is it important? design

Design - articulate the software architecture and
component functionalities which satisfy functional
and non-functional requirements while avoiding
unnecessary implementation constraints.

eg. Compiler design (Ghezzi):

» abstract syntax to focus on essential
features of language constructs;

» design to generate intermediate code for
an abstract machine

"The act/process of leaving out of consideration one or more

/

properties of a complex object so as to attend to others” .ty oo

© Kramer

Why is it important? programming

Pr'ogr'ammlng - use select | "' p/ selectable
data abstraction add() guard(

choose()
and classes so as
to generalize P— -
solutions. send() send()

receive() receive()

clientChan

Message passing

"the process of formulating general concepts by
okramer abstracting common properties of instances ”

Why is it important? advanced topics

Abstract interpretation for program analysis -
map concrete domain to an abstract domain

which captures the semantics for the purpose at
hand.

eg. Rule of signs for multiplication *

O*+ = 0*- = +*0 = -*0 = 0
= +

Hankin

"the process of formulating general concepts by
okramer abstracting common properties of instances ”

Abstraction

Abstraction is fundamental to Engineering
in general, and to Software Engineering in
particular !

Do our powers of abstraction depend on our genes ?

Can we improve our abilities ? ..and if so, how ?

Is it possible to teach abstraction ?

© Kramer

Chapter 3. Teaching abstraction?

© Kramer

Teaching experience
What is Abstraction?
Teaching Abstraction
Modelling & Analysis
Conclusion

Cognitive Development

Changes in thinking by which mental processes
become more complex and sophisticated.

Jean Piaget's fours stages of cognitive development:
1st & 2nd: sensorimotor and preoperational (O-7yrs)

3rd stage: concrete operational thought (7-12yrs)
no abstract thought

== 4th stage: formal operational period (12-adult)

think abstractly (logical use of symbols
related to abstract concepts),

Huitt & systematically and hypothetically

Hummel

Cognitive Development — formal operational thought

— 4

Formal (onset)

AG E(in years) i _~=;»~,.

© o) Formal{onsel) fFormal(mature) WEAS g bl Kuhn et al
© Kramer oA AT e W e TR 11\ oo

Cognitive Development

Changes in thinking by which mental processes
become more complex and sophisticated.

Jean Piaget's fours stages of cognitive development:
1st & 2nd: sensorimotor and preoperational (O-7yrs)

3rd stage: concrete operational thought (7-12yrs)
Some ability for abstraction with training

4th stage: formal operational period (12-adult)

Not reached by all individuals. Only 30%
to 35% of adolescents exhibit ability for
abstact thought, some adults never do!

Courses on Abstraction?

15t Year (all required):

Declarative Programming I

Databases 1

Declarative Programming IT
Discrete Mathematics 1
Discrete Mathematics 2
Hardware

Programming I

Logic

Reasoning about Programs
Programming IT

Computer Systems
Mathematical Methods and Graphics

© Kramer

2 Year (most required):
Algorithms, Complexity and Computability
Architecture IT

Compilers

Artificial Intelligence I (optional)
Operating Systems I1
Computational Techniques (optional)
Software Engineering - Design I
Concurrent Programming (optional)
Statistics

Networks and Communications

Software Engineering - Design IT

Imperial College MEng in
Software Engineering

Courses on Abstraction?

4th Year (most optional):

3rd Year (most optional):

Advanced Databases

Advanced Computer Architecture
Advances in Artificial Intelligence
Computational Finance

Computational Logic

Custom Computing

Distributed Systems

Introduction to Bioinformatics

Knowledge Management Techniques
Decision Analysis

Operations Research

Graphics

Quantum Computing

Management - Organisation and Finance (required)
Simulation and Modelling

Multimedia Systems

Software Engineering - Methods (required)
Performance Analysis

The Practice of Logic Programming
Robotics

Type Systems for Programming Languages

© Kramer

Advances in Artificial Intelligence
Advanced 6Graphics and Visualization
Advanced Issues in Object Oriented
Programming Automated Reasoning
Advanced Operations Research
Complexity

Computer Vision

Computing for Optimal Decisions

Intelligent Data and Probabilistic Inference

Domain Theory and Exact Computation
Modal and Temporal Logic

6rid Computing

Models of Concurrent Computation
Knowledge Representation

Natural Language Processing
Management - Economics and Law
Network Security

Multi-agent Systems

Program Analysis

Parallel Algorithms

Software Engineering - Environments

Courses on Abstraction?

Which courses rely on or utilise the powers of
abstraction to

- explain

- model

- specify

* reason

- solve ... ?

© Kramer

List of courses which do NOT make use of Abstraction?

© Kramer

Abstraction is essential but is taught
indirectly.

So....7?

How should we ensure that students
cah understand and make use of
abstraction ?

1. Teach enough Mathematics

2. Teach (formal) modelling and analysis

Caveat: Must be tool supported
Must feel the benefit

Chapter 4. Modelling and analysis

© Kramer

Teaching experience
What is Abstraction?
Teaching Abstraction
Modelling & Analysis
Conclusion

Models and Modelling?

A model is a description from which detail
has been removed in a systematic manner
and for a particular purpose.

A simplification of reality intended to :&ﬂ

promote understanding, reasoning and v
analysis.

Models are the most important engineering
tool; they allow us to understand and
analyse large and complex problems.

© Kramer

Ockam’s Razor

William of Ockam (1285) formulated the
famous "Rule of the Razor":

Entia non sunt multiplicanda sine
necessitate.

Entities should not be multiplied without
hecessity.

In other words a model should be as simple as
possible, but no simpler - it should discard
elements of no interest.

"Fit for purpose”.

© Kramer

software engineers

The challenge is to make
modelling and analysis
accessible and useful to

software engineers.

© Kramer

| teach Concurrency — models and programs

Model-based approach
Models

finite state models
(FSP and LTS),

model checking for
analysis (LTSA).

Practice

Map into Java for
concurrent programs.

JEFF MAGEE
~ JEFF KRAMER
© Kramer

component VOTER - behaviour *
W
)

Component:

Process specification in FSP:

VOTER = (enter -> vote -> exit -> VOTER
) @{enter,exit}.

Actions {enter,exit} are
exposed, vote is hidden.

© Kramer TFM 09

component USER - behaviour

Labelled transition system LTS:

LTS Animation
can be used to
step through the
actions to test
specific

scenarios.

t .
VOTER can be minimised with e
respect to Milner's .:j/j)
observational equivalence.

© Kramer

component BOOTH - behaviour

Component:

Process specification in FSP:

const Max = 3) Voti;g booths used in

Paris 2007 election.
range Int 0. .Max

BOOTH (N=Max) = BOOTH[N],
BOOTH[v:Int] (when (v>0) enter -> BOOTH[v-1]
| when (v<N) exit -> BOOTH[v+1]

) .

© Kramer

Modelling concurrent systems

Primitive
components

Composite
components

© Kramer

Composite component behaviour

Three voters p[1. .3] use a shared booth to register
their vote. To ensure mutual exclusion

© Kramer

VOTESDEMO

p[l] : VOTER@p[2] : VOTER@p[3] : VOTER
=0

P

/

eindhoven : BOOTH(1)

.. the
number of
spaces
available in

the booth
must be

Composite component behaviour

| VOTESDEMO = (p[l..Max] :VOTER
| | eindhoven :BOOTH (1)
)
/{p[l..Max] .enter/ eindhoven.enter,
pl[l. .Max] .exit/ eindhoven.exit}.

VOTESDEMO

© Kramer

Benefit - behaviour analysis

© Kramer

Model checking

Safety properties are checked by searching the
system state space for deadlock and ERROR states.

deadlock
state

Deadlock is a state with no outgoing transitions.
ERROR () is a trap state for property violations.

© Kramer TFM 09

Property specification

Fluents: abstract predicates or states over
sequences of events (from the Event Calculus).

Defined in terms of sets of actions:
enter

FALSE T l FALSE
» Time

fluent
VOTING]Ji:1..Max] = < p[i].enter , p[i].exit >
initially False

© Kramer [Magee & Giannakopoulou] 4

Safety Properties

assert
EXCLUSION = []!(exists[i:1..Max-1]
(VOTINGJi] && VOTINGJi+1..Max]))

Behaviour violations transition to the ERROR state.
Safety properties are violated if the ERROR is
reachable.

What if the initial value of the booth is 2 ? ...or 0?

© Kramer TFM 09

Liveness Properties
// action label denotes a fluent which is true when
// the action occurs and false immediately the next action occurs

assert
OKtoVOTE = forall[i:1..Max] [I<>p][i].enter

Use of Linear Temporal Logic LTL for liveness
results in the use of Buchi Automata.

What if we give priority to one of the voters?

© Kramer

TFM 09

Deadlock — analysis Vs intuition

© B

@0 @
,l@,l

| iFteezejl 4 I J » | Restart I » | :Flestartil

Dining Philosophers

© Kramer

abstract models <= concrete animations

@ Custom Animator
Run Trace

Channel

CHAN = (in -> out -> CHAN
|in -> fail -> CHAN
) .

© Kramer

Model interpretation =) animations

"'\'Li | i e

LTS Model checking Separate graphic
safety properties animation model which

. preserves the behaviour
¢ progr'es.s.pr'oper"rles . of the model and has
® compositional reachability

sound semantics based
@ abstraction & minimisation on Timed Automata.

© Kramer

Puzzle

k=3 SceneBean Animator

Run Trace

be used to help
understand the meaning
of counterexamples.

n The animated model can

© Kramer

NATS — short term conflict alert (STCA)

For each pair of
aircraft determine
potential conflict.

J[=] B3

Position (nm) Height (ft)
17000

We can construct :
hybrid models that |

14000

combine the -
discrete behavioural : :

11000

model with a real '

. 80 83 86 89 92 95 98 101

valued data stream. e @19:0 7.0 O

© Kramer

Model based design of concurrent programs

© Kramer http://www-dse.doc.ic.ac.uk/concurrency/

My teaching experience

Generally very good - the students find the
formal models relatively intuitive and helpful
in clarifying the problem.

Comprehension is facilitated by model

animation, model checking and simulation.

However - some still seem to find
constructing models themselves, ab initio, to be
very difficult!

© Kramer

Modelling

It is not enough to think about what
they want to model, they need to

think about how they are going to use
that model.

.. fit for purpose (Occam's Razor)

Jean-Raymond Abrial (IEEE Computer Sept 2009**)

Focus on modelling the problem:

“we have no choice but to perform a complete modeling of
our future system, including the software that will
eventually be constructed and its environment”

Use mathematical models:
- discrete transition systems and proofs

Animation complements modelling:
- "directly animating the model”
Education ?

- discipline of software engineers is (discrete)
mathematics and advocates teaching requirements
engineering and construction of mathematical models.

GLSEIICE ** “Faultless Systems: Yes We Can"

Chapter 5. Conclusion ...

© Kramer

Teaching experience
What is Abstraction?
Teaching Abstraction
Modelling & Analysis
Conclusion

ACM/IEEE Computing Curricula:
Software Engineering

Abstraction:
- Generalization
- Levels of abstraction and viewpoints
- Data types, class abstractions, generics/templates
- Composition
Modeling:
Principles of modeling
Pre and post conditions, invariants
Math models and specification languages
Model development tools and model checking/validation
Modeling/design languages (eg UML, OOD and functional)

| believe that ...

Abstraction is rarely discussed
directly, but is the key to modelling
in Software Engineering.

Students who can understand,
appreciate and utilise abstraction
produce the most elegant models
and software.

Abstraction — the key to Computing?

If we want the best Software Engineers,
we need to ...

teach them abstraction skills
consider selecting students for Computing based

not only on their school grades, but also on their
abstraction abilities?

Construct tests to assess formal operational
thinking and abstraction

(working with Orit Hazzan, Technion)

© Kramer

| believe that ...

Formal modelling is an excellent
technique for teaching, practising and
improving abstraction skills for
Software Engineers.

Abstraction and modelling are
complementary.

Abstraction and Modelling
a complementary partnership **

o
9.

% %@ Thank you.

Wy

V w

** See "Is Abstraction the key to
Computing?” CACM April 2007

