
© Kramer TFM 09 1

Jeff Kramer

Imperial College
London

Abstraction and Modelling
a complementary partnership

 “Is Abstraction the key to
Computing?” CACM April 2007



© Kramer TFM 09 2

Chapter 1.  My teaching experience

1. Teaching experience
2. What is Abstraction?
3. Teaching Abstraction
4. Modelling & Analysis
5. Conclusion



© Kramer TFM 09 3

Teaching experience

Courses:
software engineering,
distributed systems,
distributed algorithms,
programming,
concurrency,
……

Skills:
problem solving,
conceptualization,
modelling,
analysis,
……



© Kramer TFM 09 4

Experience: the better ones….

Some students are able to produce
elegant designs and solutions.

Generally the same students are also
able to comprehend the complexities of
distributed algorithms, the applicability
of the various modelling notations, and
so on.



© Kramer TFM 09 5

Experience: the others ….

Why ?

A number of others are not so able.

They tend to find distributed algorithms
very difficult, do not appreciate the
utility of modelling, find it difficult to
know what is important in a problem,
produce convoluted solutions which
replicate the problem complexities, ……



© Kramer TFM 09 6

I believe …..

…  that the heart of the
problem lies in a difficulty in
dealing with



© Kramer TFM 09 7

Chapter 2.   What is it?   Why is it so important?

Abstraction1. Teaching experience
2. What is Abstraction?
3. Teaching Abstraction
4. Modelling & Analysis
5. Conclusion



© Kramer TFM 09 8

Definitions

 the act of withdrawing or removing something

 the act or process of leaving out of consideration one
or more properties of a complex object so as to attend
to others

a general concept formed by extracting common
features from specific examples

 the process of formulating general concepts by
abstracting common properties of instances

=> generalisation (core or essence)

=> Remove detail (simplify) and focus (selection)



© Kramer TFM 09 9

Abstraction in other disciplines

Art

Music

Maps



© Kramer TFM 09 10

Matisse – guess what ….

representation
of the essence
of the subject

&
removal of
detail



© Kramer TFM 09 11

Katsushika Hokusai – guess what ….

South Wind,
Clear Skies
(Red Fuji)

…” balance of colour and composition rendering an
abstract form of the mountain to capture its
essence“  – art commentator



© Kramer TFM 09 12

Jazz

“It is easy to make something simple sound
complex, however its more difficult to
make something complex sound simple”.

jazz musician
on the
process of
abstraction –



© Kramer TFM 09 13

1930 – London Underground map

Relationship
between
stations and
interchanges,
not actual
distances

“Fit for
purpose?”



© Kramer TFM 09 14

1932 – Harry Beck (1st schematic image map)



© Kramer TFM 09 15

2001 – Fit for purpose (“mind the gap…”)



© Kramer TFM 09 16

Fit for purpose ?!



© Kramer TFM 09 17

Fit for purpose – internationally!



© Kramer TFM 09 18

Why is abstraction important in Software Engineering?

“Once you realize that computing is all about
constructing, manipulating, and reasoning about
abstractions, it becomes clear that an
important prerequisite for writing (good)
computer programs is the ability to handle
abstractions in a precise manner.”

                 Keith Devlin CACM Sept.2003

Software is abstract!



© Kramer TFM 09 19

Why is abstraction important in Software Engineering?

Requirements

Design

Programming

Software is abstract!



© Kramer TFM 09 20

Why is it important?  requirements engineering

“The act/process of leaving out of consideration one or more
properties of a complex object so as to attend to others”

Requirements - elicit the critical aspects of the
environment and required system while neglecting
the irrelevant.

requirements

goals
scenarios
assumptions
constraints
properties



© Kramer TFM 09 21

Why is it important?  design

Design - articulate the software architecture and
component functionalities which satisfy functional
and non-functional requirements while avoiding
unnecessary implementation constraints.

eg. Compiler design (Ghezzi):

• abstract syntax to focus on essential
features of language constructs;

• design to generate intermediate code for
an abstract machine

“The act/process of leaving out of consideration one or more
properties of a complex object so as to attend to others”



© Kramer TFM 09 22

Why is it important?  programming

Programming - use
data abstraction
and classes so as
to generalize
solutions.

“the process of formulating general concepts by
abstracting common properties of instances ”

Selectable

guard()

list
Select

add()

choose()

Channel

send()

receive()

Port

send()

receive()

Entry

call()

accept()
reply()

clientChan

Message passing



© Kramer TFM 09 23

Why is it important?  advanced topics

Abstract interpretation for program analysis  -
map concrete domain to an abstract domain
which captures the semantics for the purpose at
hand.

eg. Rule of signs for multiplication *

0*+  =  0*-  =  +*0  =  -*0  =  0

+*+  =  -*-  =  +

+*-  =  -*+  =  -

“the process of formulating general concepts by
abstracting common properties of instances ”

Hankin



© Kramer TFM 09 24

Abstraction

Abstraction is fundamental to Engineering
in general, and to Software Engineering in
particular !

Do our powers of abstraction depend on our genes ?

Can we improve our abilities ? …and if so, how ?

Is it possible to teach abstraction ?



© Kramer TFM 09 25

Chapter 3.   Teaching abstraction?

1. Teaching experience
2. What is Abstraction?
3. Teaching Abstraction
4. Modelling & Analysis
5. Conclusion



Cognitive Development

Jean Piaget’s fours stages of cognitive development:

1st & 2nd: sensorimotor and preoperational (0-7yrs)

3rd stage: concrete operational thought (7-12yrs)
no abstract thought

4th stage: formal operational period (12–adult)
think abstractly (logical use of symbols

related to abstract concepts),
systematically and hypothetically

Changes in thinking by which mental processes
become more complex and sophisticated.

Huitt &
Hummel



© Kramer TFM 09 27

Cognitive Development – formal operational thought

4

3

3

Kuhn et al

Formal (onset)



Cognitive Development

Jean Piaget’s fours stages of cognitive development:

1st & 2nd: sensorimotor and preoperational (0-7yrs)

3rd stage: concrete operational thought (7-12yrs)
no abstract thought

4th stage: formal operational period (12–adult)
think abstractly (logical use of symbols

related to abstract concepts),
systematically and hypothetically

Changes in thinking by which mental processes
become more complex and sophisticated.

Not reached by all individuals. Only 30%
to 35% of adolescents exhibit ability for
abstact thought, some adults never do!bad news

Some ability for abstraction with training

good news



© Kramer TFM 09 29

Courses on Abstraction?

Imperial College MEng in
Software Engineering

1st Year (all required):
Declarative Programming I

Databases 1

Declarative Programming II

Discrete Mathematics 1

Discrete Mathematics 2

Hardware

Programming I

Logic

Reasoning about Programs

Programming II

Computer Systems

Mathematical Methods and Graphics

2nd Year (most required):
Algorithms, Complexity and Computability

Architecture II

Compilers

Artificial Intelligence I (optional)

Operating Systems II

Computational Techniques (optional)

Software Engineering - Design I

Concurrent Programming (optional)

Statistics

Networks and Communications

Software Engineering - Design II



© Kramer TFM 09 30

Courses on Abstraction?

3rd Year (most optional):
Advanced Databases

Advanced Computer Architecture

Advances in Artificial Intelligence

Computational Finance

Computational Logic

Custom Computing

Distributed Systems

Introduction to Bioinformatics

Knowledge Management Techniques

Decision Analysis

Operations Research

Graphics

Quantum Computing

Management - Organisation and Finance (required)

Simulation and Modelling

Multimedia Systems

Software Engineering - Methods  (required)

 Performance Analysis

The Practice of Logic Programming

Robotics

Type Systems for Programming Languages

4th Year (most optional):
Advances in Artificial Intelligence

Advanced Graphics and Visualization

Advanced Issues in Object Oriented

Programming Automated Reasoning

Advanced Operations Research

Complexity

Computer Vision

Computing for Optimal Decisions

Intelligent Data and Probabilistic Inference

 Domain Theory and Exact Computation

Modal and Temporal Logic

Grid Computing

Models of Concurrent Computation

Knowledge Representation

Natural Language Processing

Management - Economics and Law

Network Security

Multi-agent Systems

Program Analysis

Parallel Algorithms

Software Engineering - Environments



© Kramer TFM 09 31

Courses on Abstraction?

Which courses rely on or utilise the powers of
abstraction to

• explain

• model

• specify

• reason

• solve …. ?



© Kramer TFM 09 32

List of courses which do NOT make use of Abstraction?



© Kramer TFM 09 33

So ….?

Abstraction is essential but is taught
indirectly.



© Kramer TFM 09 34

So ….?

How should we ensure that students
can understand and make use of
abstraction ?

1. Teach enough Mathematics

2. Teach (formal) modelling and analysis
Caveat: Must be tool supported

Must feel the benefit



© Kramer TFM 09 35

Chapter 4.   Modelling and analysis

1. Teaching experience
2. What is Abstraction?
3. Teaching Abstraction
4. Modelling & Analysis
5. Conclusion



© Kramer TFM 09 36

Models and Modelling?

  A model is a description from which detail
has been removed in a systematic manner
and for a particular purpose.

 A simplification of reality intended to
promote understanding, reasoning and
analysis.

 Models are the most important engineering
tool; they allow us to understand and
analyse large and complex problems.



© Kramer TFM 09 37

Ockam’s Razor

William of Ockam (1285) formulated the
famous “Rule of the Razor”:

Entia non sunt multiplicanda sine
necessitate.

Entities should not be multiplied without
necessity.

  In other words a model should be as simple as
possible, but no simpler - it should discard
elements of no interest.

 “Fit for purpose”.



© Kramer TFM 09 38

software engineers

The challenge is to make
modelling and analysis
accessible and useful to
software engineers.



© Kramer TFM 09 39

I teach Concurrency – models and programs

 Model-based approach
  Models

 finite state models
(FSP and LTS),

model checking for
analysis (LTSA).

  Practice
Map into Java for

concurrent programs.



© Kramer TFM 09 40

component VOTER - behaviour

Component:

Process specification in FSP:

VOTER enter
exit

VOTER = (enter -> vote -> exit -> VOTER
        ) @{enter,exit}.

Actions {enter,exit} are
exposed, vote is hidden.



© Kramer TFM 09 41

component USER - behaviour

Labelled transition system LTS:
LTS Animation
can be used to
step through the
actions to test
specific
scenarios.

VOTER can be minimised with
respect to Milner’s
observational equivalence.



© Kramer TFM 09 42

component BOOTH - behaviour

Component:

Process specification in FSP:

BOOTH
enter exit

const Max = 3
range Int = 0..Max

BOOTH(N=Max) = BOOTH[N],
BOOTH[v:Int] =(when(v>0) enter -> BOOTH[v-1]
              |when(v<N) exit  -> BOOTH[v+1]
              ).

Voting booths used in
Paris 2007 election.



© Kramer TFM 09 43

Modelling concurrent systems

Composite
components

Primitive
components



© Kramer TFM 09 44

Composite component behaviour

Three voters p[1..3] use a shared booth to register
their vote. To ensure mutual exclusion ……

… the
number of

spaces
available in
the booth
must be 1.

p[1] : VOTER

eindhoven : BOOTH(1)

p[2] : VOTER p[3] : VOTER

VOTESDEMO



© Kramer TFM 09 45

Composite component behaviour

||VOTESDEMO = (  p[1..Max]:VOTER
  || eindhoven :BOOTH(1)

      )
/{p[1..Max].enter/ eindhoven.enter,
  p[1..Max].exit/ eindhoven.exit}.

p[1]

eindhoven 

p[2] p[3]
VOTESDEMO



© Kramer TFM 09 46

Benefit - behaviour analysis



© Kramer TFM 09 47

Model checking

Safety properties are checked by searching the
system state space for deadlock and ERROR states.

Deadlock is a state with no outgoing transitions.
ERROR (π) is a trap state for property violations.

30 1 2-1
ERROR
state

deadlock
state



© Kramer 48

Property specification

Defined in terms of sets of actions:

Time

fluent
   VOTING[i:1..Max] = < p[i].enter , p[i].exit >

    initially False

enter exit

TRUE FALSEFALSE

[Magee & Giannakopoulou]

Fluents: abstract predicates or states over
sequences of events  (from the Event Calculus).



© Kramer TFM 09 49

Safety Properties

Behaviour violations transition to the ERROR state.
Safety properties are violated if the ERROR is
reachable.

What if the initial value of the booth is 2 ? …or 0?

assert
EXCLUSION  = []!(exists[i:1..Max-1]

(VOTING[i] && VOTING[i+1..Max]))



© Kramer TFM 09 50

Liveness Properties

What if we give priority to one of the voters?

// action label denotes a  fluent which is true when
// the action occurs and false immediately the next action occurs

assert
OKtoVOTE = forall[i:1..Max] []<>p[i].enter

Use of Linear Temporal Logic LTL for liveness
results in the use of Buchi Automata.



© Kramer TFM 09 51

Deadlock – analysis Vs intuition

Dining Philosophers



© Kramer TFM 09 52

abstract models             concrete animations

 

CHAN 

in 

in 

out 

fail 

0 1 2 

CHAN = (in -> out  -> CHAN
       |in -> fail -> CHAN
       ).



© Kramer TFM 09 53

Model interpretation             animations

LTS
model

LTS Model checking
safety properties
progress properties
compositional reachability
abstraction & minimisation

Animation

Separate graphic
animation model which
preserves the behaviour
of the model and has
sound semantics based
on Timed Automata.

mapping



© Kramer TFM 09 54

Puzzle

The animated model can
be used to help
understand the meaning
of counterexamples.



© Kramer TFM 09 55

NATS – short term conflict alert (STCA)

For each pair of
aircraft determine
potential conflict.

We can construct
hybrid models that
combine the
discrete behavioural
model with a real
valued data stream.



© Kramer TFM 09 56

Model based design of concurrent programs

http://www-dse.doc.ic.ac.uk/concurrency/



© Kramer TFM 09 57

My teaching experience …..

 Generally very good - the students find the
formal models relatively intuitive and helpful
in clarifying the problem.

 Comprehension is facilitated by model
animation, model checking and simulation.

 However – some still seem to find
constructing models themselves, ab initio, to be
very difficult!



© Kramer TFM 09 58

Modelling

 It is not enough to think about what
they want to model, they need to
think about how they are going to use
that model.

 … fit for purpose (Occam’s Razor)



© Kramer

Jean-Raymond Abrial   (IEEE Computer Sept 2009**)

TFM 09 59

Focus on modelling the problem:
”we have no choice but to perform a complete modeling of

our future system, including the software that will
eventually be constructed and its environment”

  Use mathematical models:
- discrete transition systems and proofs

  Animation complements modelling:
- “directly animating the model”

  Education ?
- discipline of software engineers is (discrete)

mathematics and advocates teaching requirements
engineering and construction of mathematical models.

** “Faultless Systems: Yes We Can”



© Kramer TFM 09 60

Chapter 5.   Conclusion ...

1. Teaching experience
2. What is Abstraction?
3. Teaching Abstraction
4. Modelling & Analysis
5. Conclusion



ACM/IEEE Computing Curricula:
Software Engineering

Abstraction:
- Generalization
- Levels of abstraction and viewpoints
- Data types, class abstractions, generics/templates
- Composition
Modeling:
- Principles of modeling
- Pre and post conditions, invariants
- Math models and specification languages
- Model development tools and model checking/validation
- Modeling/design languages (eg UML, OOD and functional)
- …



© Kramer TFM 09 62

I believe that …

  Abstraction is rarely discussed
directly, but is the key to modelling
in Software Engineering.

 Students who can understand,
appreciate and utilise abstraction
produce the most elegant models
and software.



© Kramer TFM 09 63

Abstraction – the key to Computing?

 teach them abstraction skills
consider selecting students for Computing based

not only on their school grades, but also on their
abstraction abilities?

 Construct tests to assess formal operational
thinking and abstraction

(working with Orit Hazzan, Technion)

If we want the best Software Engineers,
we need to …



© Kramer TFM 09 64

I believe that …

  Formal modelling is an excellent
technique for teaching, practising  and
improving abstraction skills for
Software Engineers.

 Abstraction and modelling are
complementary.



© Kramer TFM 09 65

Abstraction and Modelling
a complementary  partnership **

Thank you.

** See “Is Abstraction the key to
Computing?” CACM April 2007


